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ABSTRACT

This report contains an explanation of an algorithm that, when executed,

will operate on any symmetric “approximate correlation matrix” by iteratively

adjusting the eigenvalues of this matrix. The objective of this algorithm

is to produce a valid, positive definite, correlation matrix. Also a

description of a program (called POSDEF) which implements the algorithm is given.
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1. Introduction

Many modeling situations exist where the assumption of independence

among variables may not be appropriate. Indeed, “real world problems”

exist where dependence or correlations do exist among the variables,

and the design of an experiment investigating these variables should make

use of this “correlation structure.”

This dependence structure among the variables is appropriately sum-

marized in a rank correlation matrix. Iman and Davenport (1980) discuss

in some detail the advantages of using correlations, specifically rank

correlations, as a method of inducing depcmdences among variables.

Therefore, within this report, we assume that the dependence structure

among the variables is adequately summarized in a rank correlation matrix.

In general, when we speak of correlations in this report, we will

mean rank correlations, since it is not always appropriate to “talk

about” a raw correlation. However, it should be pointed out that, if

it is appropriate to define a Pearsonian correlation coefficient between

two variables, then the methods discussed here apply without loss of

generality.

It is extremely important that existing correlation structure be

specified as accurately as possible. If the modeler is fortunate, he

can estimate this correlation matrix from data, and hence, the resulting

estimated correlation matrix is either positive definite or positive
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semi-definite. However, the modeler may find that no data are available,

and he is faced with the task of assigning values to these correlation

coefficients by whatever methods he can assemble. Under such conditions,

it is not unusual for the modeler to use a “sophisticated guess” for the

value of a correlation coefficient. Furthermore, the modeler seldom can

“estimate” the entire correlation structure simultaneously and is compelled

to provide a collection of pair-wise correlation coefficients. That is,

the modeler specifies this correlation matrix by setting the diagonal

elements equal to +1.0 and each off diagonal element equal to some number

between -1.0 and +1.0, that he feels best describes the dependence between

those two variables.

Such a collection of pair-wise correlation coefficients does not

a “correlation matrix” make! Indeed, Mother Nature does not always have

a charitable character, and it is not too surprising that such “corre-

lation matrices” are not positive definite. Therefore, the modeler

must deal with the problem that he cannot assign values indiscriminately

to the off-diagonal elements without regard for the total correlation

structure.

Such an example is the case of the multivariate k-dimensional normal

distribution. Let :P be the correlation matrix of this distribution

such that all off-diagonal elements are equal to P (the diagonal elements

are, of course, equal

#T<p

to +1.0). Then it can be shown that

< 1.
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That is, as k becomes larqe, then there can be no large negative correlations.

The intent of this report is to present an algorithm (and a program)

that will take the collection of pair-wise rank correlations (in the

sequel, called the “approximate correlation matrix”) and iteratively

adjust this matrix until it is positive definite (note that the approx-

imate correlation matrix is symmetric).

The algorithm given in this report is based on the premise that an

approximate correlation matrix that is constructed by the method described

above will have the following structure. Some of the eigenvalues will be

positive. In fact, if the modeler has been careful in the selection of

the pairwise correlations, taking into consideration the total correlation

structure, then all of these eigenvalues will be positive; and hence the

correlation matrix is positive definite. However, it may he possible for

some of the eigenvalues to be zero or negative. If there are negative

eigenvalues present.and if one or more of those negative eigenvalues are

relatively large in absolute value (s~y a value 1, 2 or 3) , then we say

that this matrix is illconditioned with respect to this algorithm.

We have investigated several examples of this type of approximate

correlation matrix, and have noted the following additional patterns.

The number of negative eigenvalues was relatively small as compared to

the dimension of the matrix. Also the values of these negative eigen-

values were very near zero. In addition, some of the positive eigenvalues

were very near zero.

!~{efeel that this structure that we have observed in these examPleS
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is related to the multicollinearity problem that is common in regression

analysis. That is, as the dimension of the matrix (the number of variables)

increases, then the associated correlation matrix is more likely to be

near singular. The present problem is made more complicated by the fact

that some negative eigenvalues are also present.

If the eigenvalues that are negative are few in number and small in

absolute value, then it should be possible to adjust them so that the

initial matrix is transformed into a positive definite matrix (all eigen-

values positive), subject to tfieconstraint that the values of the correla-

tion coefficients in the new matrix are very close to the values in the

initial approximate

this report indicat’

correlation matrix. While we present no theorems in

ilgthe conditions necessary and/or sufficient under

which this algorithm will be valid, our experience in working with this

type of matrix indicates that it will converge (i.e., we have not encountered

any examples where it failed to converge.)

Likewise, our investigations of the several examples that we considered

indicate that this iterative adjustment scheme produces small changes

in the values of the correlation coefficients in the initial approximate

correlation matrix. This is due to the fact that, for this type of

matrix, small changes in the eigenvalues produce small changes in the

entries cf the matrix.

In Section II, we describe the algorithm that is used in the program

POSDCF in detail. However, there are some very important variations to

this algorithm that merit our attention. These are discussed in section
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111. A description of the program POSDEF is given in section IV, and an

example of the deck setup for using POSDEF is in section V. The final

section contains a discussion.
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11. Description of the Algorithm

Let C be an n x n symmetric, non-singular matrix such that the ele-

ments of C satisfy the fo?lowinq:

Cii = 1 i =1,2, . ..n

and -l <Cij<lfOri #j.

Then it is well known that there exists a matrix Z and a diagonal matrix

D, each of dimension n x n such that (see Graybill, 1961)

Cz = ZD.
.-..

The columns of Z are the respective eigenvectors of the matrix C and the
“

elements of D are the eigenvalues. That is,

D=
●

●

●

An

and we assume, without loss of generality, that A1 < AZ < .... < x n.

Since Z is an orthogonal matrix, we have the following result.
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Czz” = ZDZ”..--., ..-

C = Zr)z”
. . .

n
c= L Aj Zi Zi’

i=l - -

Where ?i is the ith column of Z.

Now suppose that Al < A2 < .... < Ak, k < n are all negative,

but small in absolute value. The first step in the algorithm is tb change

each of these negative eigenvalues to a small positive number that we will

denote by c. The idea is to make all of the eigenvalues positive, and

hence, the new matrix to be calculated should be positive definite,

or at least have fewer negative eigenvalues than it had previously.

However, we do not wish to change the values of the individual elements

of C anymore than we have to. Therefore we choose a value for c that is

very small, namely c = 0.001. Likewise, we choose not to change the

eigenvectors, to minimize the effect on the matrix C.

The second step in the algorithm is to exdmine the eigenvalues

~k+l < ~k+2 < .... < ~2k and change these values, if necessary,

by the following procedure.

for i =k+l, ..... 2k.
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That is, if A-jwhere k + 1 < i < 2k is smaller than e = 0.001, then

we increase its value to .001. If it is larger than c, then we leave

Ai unchanged. This portion of the algorithm improves the operating

characteristics of the overall iteration scheme in the examples that

we considered. This is discussed in more detail in Section III.

Now a new matrix can be calculated using the new eigenvalues dis-

cussed above and is defined as follows:

Recall that the original matrix C had diagonal elements equal to

+1. This will not be true of the matrix C*. In general, the diagonal

elements of C* will be slightly greater than one, and in fact, some of the

off-diagonal elements of C* may be greater than one, depending upon the

initial values within the matrix C.

Our objective is to produce a positive definite correlation matrix;

therefore, some scaling of the elements of C* must be done in order to

make it conform to the definition of a correlation matrix. The procedure

used here is to simply replace each of the diagonal elements of C* by +1

and leave the off-diagonal elements unchanged. The result is a symmetric

matrix with diagonal elements equal to positive one and off-diagonal elements

approximately equal to those in C, the original matrix. We denote this

new matrix by Cl (indicating the end product of one cycle in the iteration

process).
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If Cl is positive definite then the process is complete and no

further adjustment is needed. If the matrix Cl is not positive defi-

nite, then the entire process is repeated using the new matrix Cl in

place of the original matrix C. The end product of the second cycle

of the iteration process is denoted by C2. If C2 is positive definite,

then the process is complete. If C2 is not positive definite then the
.

entire process is repeated with a third cycle. This iteration process

is executed as many times as necessary, until the end product is a

positive definite matrix.

A disclaimer is in order. We do not know whether or not this

algorithm will always converge to a positive definite matrix. As stated

in a previous secticn, we have no theorems that indicate when it will

converge and/or when it will fail. However, we have used this algorithm

on many approximate correlation matrices and it has never failed to

converge to a positive definite matrix.

Given that the algorithm does converge to a positive definite matrix

(i.e., ail of the eigenvalues are positive), then it would appear that

there is a possibility of one or more of the off-diagonal elements having

an absolute value larger than 1. The following theorem demonstrates that

this is impossible.

Theorem. Given that the algorithm converges to a positive definite matrix

A (of dimension nxn) then Ipijl K 1 for all i # j and i, j = 1,2, ....n

‘h element of A.where Pij is the (ij)

Proof: Assume Pij is an arbitrary but fixed element

Fljrthermore, assume Ipij] z 1. The matrix A

of A such that i # j.

can be transformed
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into a matrix B by elementary row and column interchanges so

that b12 = b21 = Pij = Pji. That is

EjEi AE1’Ej-=B=

1 Pji . . . bln

Pij 1
●

●

.

●

●

bnl 1

where Ei and Ej are the appropriately defined nonsingular

matrices that accomplish the row and column interchanges. Note

that the matrices A and B have identical eigenvalues (Graybill,

1961, Theorem 1.28, p.4). Further note that the matrix B is not

2, K O (Graybill, 1961, Theorempositive definite, since (1 - Pij ,

1.23, p. 3-4). Therefore, at least one of the eigenvalues of II

is zero or negative. But this contradicts the fact that all

of the eigenvalues of the matrix A are positive. Therefore,

lPijl <1 for all i # j.

Hence, if the algorithm converges, then the matrix produced will

indeed be a positive definite correlation matrix. The user should note that,

in general, this matrix still will be very nearly singular. Likewise,

our experience has shown that the changes in the values of the elements

of the original matrix will be small (the reader is referred to Table 1

for some examples). In conclusion, the algorithm meets the objectives

that we set at the outset.
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111. Important Variations of the Algorithm

There are essentially two important steps in this adjusting

algorithm. They are:

(1) adjust the values of the eigenvalues Al, A2,..., A2k

associated with the matrix Ci, i = 0,1,2, ...

(2) scale the diagonal and off-diagonal elements of the matrix

Ci*, i = 0,1,2,...

See Section 11 for the respective definitions of Ci and Ci*..

Several different schemes for accomplishing (1) were investigated

before deciding to use the particular scheme described in section II.

All of these were motivated by the following discussion.

Recall that we are assuming Al, A2, .*., ~k are all IWgdtjV(2

~?r~d small in absolute value. Any such adjustment scheme must change these

tc)positive values. However, we do wish to minimize the effect on the

elements of the original matrix, Ci. Therefore, it seems reasonable to

adjust ~k+l < ~k+2 < .000 < A2k accordingly to compensate for

chanqing Al < A2 < .... < Ak. The objective is to minimize

net effect on the original matrix Ci.

Since Al is the smallest eigenvalue, we arbitrarily pa

the

r Al

with ~2k, the largest eigenvalue among the eigenvalues considered.

I.ikewise pair A2 with ~2k-1 etc., and finally pair ~k with ~k+l.

CC)nsider the pair (Al, Azk). Recal? that we will replace Al
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with c and now wish to change A2k to a value, say u, such

that

. . . . .- “.

t{owever, in general, this is impossible as no such value of u exists that

satisfies all of these equations. So to obtain some “overall effect,”

we can sum tt!eseequations to form one equation in one unknown. Pre-

multiplying the above equation by J“ and post-multiplying by !J, where

J is a vector of all ones, yields

AI(J’ Z1)2
--- + ‘2k(:’ ;2k)2 = ‘(:” ;1)2 + u(:” :2k)2

Solving for u, we heve

u = (al - & )R + ~2k

where

R = (J’ Zl)2/(J” Z~k)2
. . -.

(3.1)

(3.2)

Examination of equation 3.1 indicates that the essence of the adjust-

ment. to A2k is to decreas~ its value by some appropriate amount.

Therefore, rather than using orilyequation 3.2 for the definition of R, we

investigated many different ways of finding a suitable value of R including

several obvious values such as zero and one.
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@f course, it should be obvious that the total scheme of adjusting

these eigenvalues would be accomplished on each pair of eigenvalues,

(al, A2k)S (A2, ~2k-l)S ● *OS (~k, ‘k+l)*

Note that any choice of R # O may produce a negative value for u

(see equation 3.1), and hence this scheme would replace a positive eigen-

value with a ~egative number. This is obviously unacceptable, so we

incorporated the following check into the algorithm.

IF(u. LT. s)u=c (3.3)

Hence, if R = O aridstatement 3.3 is included in the al,orithm, the

net effect is to replace those eigenva~ues, among the set (Ak+l,

~k+.2, A2k), that are less than c with the value of c. On the...’.

surface, this may seem strange to leave statement 3.3 in the program

when R = O. Especially, since the eigenvalues ~k+l, .... ~2k should

be left unchanged, whenever R = O (according to the equation 3.1). But

empirical investigations indicated that leaving statement 3.3 in the

algorithm whenever R = O slightly improved the convergence characteris-

tics of this iterative algorithm. That is, the algorithm converged in

slightly fewer iterations whenever statement 3.3 remained in the

algorithm.

At the same time we investigated the effects of statement 3.3 being

included or excluded from the program, we were investigating many non-

zero values of R. Also we investigated several techniques of “estimating”
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R from the eigenvectors Zij i = 1,2,. ..,2k. However, none of these

produced any significant improvement in the algorithm over the choice

R=O.

In conclusion, the algorithm as stated in Section II amounts to

setting R = O and including statement 3.3 in the program.

As stated at the beginning of this section, the second important

step of this algorithm is to scale the elements of the matrix

Cl*, i =0,1,2, .*.O , We tried five different methods of scaling this

matrix and outline these in the following paragraphs.

Method A———

The diagonal elements of the matrix are set equal to 1.

changes are made.

Method B.

The diagonal elements of the matrix are set equal to 1.

No other

Since some

of the off-diagonal elements may be greater than or equal to one or less

than clrequal to minus one, it would seem that these elements should be

scaled also. These off-diagonal elements are set equal to +.9999 and

-.9999 respectively.

Methocl C———

Each element in a row is divided by the square root of the diagonal

element of that row. Likewise, each element in a column is divided by the

square root of the diagonal element of that column. That is,
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r(i,j) replaced by r(i,j)
i~i~) ● {~

where r(i,j) is the (i,j)th element of the matrix under consideration.

Note that this method guarantees that the diagonal elements will all be

equal to 1. However, this does not insure that the off-diagonal elements

will be between minus one and plus one.

Method D

Essentially, this method is the same as method C with the following

exception. If a row (column) does not have any off-diagonal elements

outside the interval (-1,1), then the division process described in

method C is not accomplished. However, some of the diagonal elements

may still be greater than 1 or less than 1. Therefore, we follow the

needed divisions described above, by setting all of the diagonal elements

equal to 1.

Method E

This method is the same as method D with the additional modification

that whenever you do divide a row (column) by the square root the diagonal

element of that row (column), you subtract 0.05 from the diagonal element

before yOIJ take its square root. For example, suppose r(4,4) = 1.0785

and the division process is called for. Then every element in the fourth

row and fourth column is divided by ~. Then, as in method D,

every diagonal element is set equal to 1.
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These different methods of scaling the matrix produced some interest-

ing results. For example, method C always converged in exactly one

iteration on every

duced the greatest

Ci (see Table 1).

scaling scheme.

exarlple that we tested. However, method C also pro-

change in the “correlations” in the original matrix

For this reason, we decided not to use method C as the

Several examples of approximate correlation matrices were tested

using the algorithm with all combinations of the eigenvalue adjustments,

the five scaling schemes, and with or without statement 3.3. One such

matrix is given as an example in Figure 1. Within this matrix we selected

two elements, namely P12 = .9000 an P15,14 = .9999 and have summarized

the effect of the iteration procedure on these two elements in Table 1.

As stated earlier, we investigated many techniques for selecting

a value for R, but could find no value of R that offered any significant

improvement over the choice R = 0. In Table 1, we present the two values

R= OandR=l.

Further investigation of the examples, whenever R = O, indicated that

the scaling scheme A seems to produce the smallest changes in the values

within the original matrix. This is illustrated with the two cases given

in Table 1.

Finally our investigations indicate that, whenever R = O, the algorithm

converged in fewer iterations with statement 3.3 included. Again, this

is illustrated in Table 1.
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Our recommendation to use R = O, include statement 3.3 in the algorithm

and use method A for the scaling scheme. This is the algorithm described

in section II.
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Value of
R —

o
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1

TABLE 1

COMPARISON OF DIFFERENT ADJUSTMENT AND SCALING SCHEMES

Value of Correlation
Coef. After Cor?veraence

Statement
3*3 *

w
w/o
w
w/o
w
w/o
w
w/o
w
w/o

w
w/o
v!
w/o
VI
w/o
w
w/o
w
w/o

Target Target Number of
Seal ing Value

Scheme = .9999

A
A
B
B
c
c
D
D
E
E

A
A
B

l!!
c
D
D
E
E

.9708

.9711

.9689

.9692

.9389

.9389

.9425

.9421

.9647

.9635

.9712

.9703

.9712

.9703

.9421

.9421

.9712

.9703

.9712

.9703

Value
= .9000

.9011

.8975

.9011

.8975

.8698

.8698

.8996

.8990

.9011

.B9A2

.8790

.8747

.8790

.8747

.9133

.9133

.8790

.8747

.8790

.8747

Iterations to
Convergence

11
12
11
12

1
1

::
11
12

12
11
12
11

1
1

12
11
12
11

*. w indicates that statement 3.3 is included, w/o indicates that it”
was excluded.
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IV. Program Description

The description contained herein details how to use the program,

called POSDEF, that implements the algorithm described in section II.

This program has been developed at Sandia Laboratories and a complete

listing of the Fortran computer code is given in Appendix A.

The procedure for the program is basically very simple. The

“approximate correlation matrix” is read into the program. This matrix

is adjusted iteratively until it converges to a positive definite matrix

or until a fixed number of iterations have been executed. In the

following, we discussed the limitations on the progriim, input parameter

card requirements, an explanation of the output, and an example with

selected portions of the output..

A. Limitations on the Program

As the program presently exists, there are several limitations.

However, these are not absolute limitations and can be changed by the

user to suit his/her needs.

l-he first limitation concerns the upper limit on the size of the

correlation matrix that can be read into the program. At present, a

matrix of dimensions less than or equal to 20 x 20 can be accommodated.

In f~ict,the program expects this matrix to be in symmetric storage

notation. This is explained in the next subsection.

The second limitation concerns the value used for c. Within the

program, this is designated by the variable EIG. The value used for this
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quantity is 0.001. This value can be changed without adversely affecting

the program, but the user should realize that if the value of EIG is

increased, this will increase the number of iterations required for

convergence and cause greater perturbations in the individual elements

of ‘theoriginal matrix.

The third limitation concerns the upper limit on the number of

iterations allowed. The program presently allows a maximum of 20

iterations. If the algorithm does not converge after 20 iterations,

the user should examine the original input “approximate correlation

matrix” very carefully for unlikely configurations of correlation

structure. This is discussed in more detail in section VI.

The fourth limitation concerns the need for the IMSL sub-

routine EIGRS. The program POSDEF begins by decomposing the input

matrix into its unique eigenvalues and eigenvectors. The IMSL sub-

routine will provide these eigenvalues and eigenvectors for an input

matrix that is assumed to be in synmetric storage notation. If the

EIGRS subroutine is not available, then some other subroutine that

computes eigenvalues and eigenvectors should be used in its place.

B. Input - Parameter Cards.

All of the following parameter cards are required and must be in

the order given. Also each card must conform to the format given. An

explanation and illustration of each parameter card follows.
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!1. MATRIX SIZE AND OUTPUT CONTROL CARD - Format (215).

This card has two integer valued arguments specified as

shown below:

5 6...10

where

NP is the dimension of the “approximate correlation matrix”

that is to be read in (NP - a maximum of 20).

IDIAG is an indicator variable that controls the printing of some

of the output. After the last iteration the user may wish to

see an analysis each p x p prime diagonal submatr~jx. See the

next subsection for further discussion.

= O then this analysis will not be done.

= 1 then this analysis will be done and printed.

2. VARIABLE IDENTIFICATION CARD - Format (1615)

This card reads in integer identification numbers that are

associated with the variables that are represented by the

“approximate correlation matrix.” For example, suppose we wish

to correlate the third, fourth and seventh variable out of ten

variables being investigated. Then we would wish to label these

variables as “3”, “4”, and “7” respectively. The following
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example illustrates this and note that a maximum of 20 labels

may be read in.

NK(17) . . . NK(20)

1 ... 5 16 ... 20

/ r

NK(l) NK(2) NK(3) .** NK(16)~

I. ... 5 6 ... 10 11 ● ,. 15 76 ... 80

The only purpose of these identification numbers is to

label the variables in the output. The algorithm does not

depend on these numbers in any way.

3. llAppROXIMATE CORRELATION MATRIX” CARD - Format (8G1O.4)

The program is formated such that this matrix must be in

symmetric storage notation. That is, the symmetric matrix C

is read in as a vector where the first element of the vector is

c(I,l), the second is c(2,1), the third c(2,2), the fourth

c(3,1), etc. As many cards as are necessary may be used as long

as each card is in an 8G1O.4 format. An example follows.

~.. . lCORX(NK*) I

*
b

●

b
* 4

r

CORX (l) CORX (2) CORX (3)

1 ... 10 11 ... 20 21 ... 30 . . .

where NKX = NP(NP+l)/2. This is the last input-parameter card.



-23-

C. An Explanation of the Output.

A complete set of the following information is printed for each and

every iteration.

1.. The iteration number.

Z!. The input “approximate correlation matrix. ”

2Ie. The eigenvalues and eigenvectors that are computed by the IMSL

subroutine EIGRS. Note that the first row printed is actually

the first column of Z (see section II). That is, the first row

printed is Z1’. In general, the ith row printed is ~i-,

the ith column of Z.

4. The eigenvalues after the adjustment scheme has been executed

(see sections II and 111).

5’. After the,eigenvectors and the adjusted eigenvalues are multi-

plied appropriately to reconstruct the “new approximate corre-

lation matrix, “ C*, this matrix is printed.

6. This is followed by two statements indicating that the diagonal

elements of C* are set equal to one. This completes a single

iteration.

This information is printed for each iteration. If the

algorithm converges on the mth iteration; then iteration m + 1

will be begun, but the program will detect that all the eigen-

values are positive. Then the program will indicate that all

the eigenvalues were positive on iteration m + 1. This is

followed by the final positive definite correlation matrix.
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If IDIAG = O (see input - parameter card #1) then the

following information will not be printed. If IDIAG = 1, then

each p x p main diagonal submatrix p = 2, .... f’lpis examined

via its eigenvalues, eigenvectors and determinant. This com-

pletes the explanation of the output.

D. An Example with Selected Portions of the Output

In the following example, 16 of 64 different variables were to be

correlated. The modeler provided a collection of pairwise rank corre-

lations, that when taken as a “correlation matrix” was not positive

definite. The labels for these 16 variables are 4, 8, 12, .... 64. The

deck set-up for this example is given in section V and the remainder of

this example is best illustrated by the example output that follows.

Figure 1 gives the input “approximate correlation matrix.” This

is also the first page of the output of the program.

Figure 2 gives the eigenvalues, eigenvectors and determinant of this

matrix. The eigenvalues after adjustment are also given. This is the

second page of output.

Figure 3 gives the reconstructed “approximate correlation matrix”

using the adjusted eigenvalues. Note that the diagonal elements and at

least one of the off-diagonal elements is greater than one. This is also

the third page of output.

Figure 4 gives the resulting “approximate correlation matrix” that

is the end product of the first iteration. This matrix is also the



-25-

beginning matrix of the second iteration. This is the fourth page of

output from the program.

Figure 5 presents the input matrix to the 12th iteration. Figure

6 presents the eigenvalues and eigenvectors of this matrix; as you can see,

all the eigenvalues are positive and the determinant is positve. There-

fore, the algorithm converged to this matrix after eleven iterations.

Figures 7 and 8 give respectively the eigenvalue/eigenvector anal-

ysis of the 2 x 2 and 3 x 3 prime diagonal submatrices of the matrix

given in Figure 5. This is done for each prime diagonal submatrix as

P = 2, .... 16.

This completes the explanation of this example and illustrated output.



ITCRATION NIJHfj~Fl= 1

INPLT “RANK CORRELATION STRUCTURE”

VARIABLE NUMBER

4 a 12 16

+ 1.0000

a ●9000 AOaooo

12 .6CO0 ●50C0 100000

16 .7000 ●7000 ●5000 1C9000

2U _ 8060 .8000 .530s ●6000 1.0000

FOR THE RANOW VARIA04_ES BEIN6 TRANSFORIIEO

2C 2+ 28 32 36 52 56 60
}

‘ 64 Variable
Identification
Numbers

Input “Approximate Correlation Matrix”

24 ●5080 ●5noo ●3000 ●6000 ●6000 1.0000

28 ‘.9000 -*8000 -.5000 -.~OOO -.7000 -.4000 1.000o

52 -.7000 -.6000 -.+000 --6000 -.7000 -.6900 ●8000 1.0000 ‘

36 -.5600 -.7GO0 -.2000 ‘.8000 -.8000 -.8000 ●7600 .9000 ‘lDOOOO

40 .2000 ●1000 -.1000 ●1OOO ●1000 ●1000 --1600 -.3000 -.5000 1.0000

44 .1000 .1000 ●1900 .1000 .1000 ●1OOO -.3000 -.3000 -.3000 .6000 1.0000

48 ‘.7000 -.6900 ‘.+040 -.tOOiA -.3000 -.3000 .6000 .6000 .6000 -.1000 -.8000 1.000fl

52 -.8000 -“-8*uO ‘06080 -.8000 -.8000 -.8000 ●8000 ●90 oil .9000 -.6000 -.5OOO s6000 1.0000

56 .6000 .6000 .+300 ●8000 ●7000 ●7000 -m8000 -.8000 -.9000 ●6000 .6000 -.4000 -.9000

60 96LG0 .6000 ●2000 .9000 ●7000 ●7000 -.8CO0 -.7000 -.9000 95000 .5000 -9+000 -*SOOO

64 -.7000 -.6000 -*2090 -.600@ -.6000 -.6000 ●?Coo .9000 .8000 -.5000 -.5000 88000 .7000

I

Off-diagonal

Z “element very

d1.0000
near one

.9s99 1.0000

--7000 -.6000 1.0002

Figure 1
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,..

AhALY:[$ CF II+L 16 8Y 15 PRIME DIAGONAL SUHMAJRIX

PERFORMANCE INDEX = .i12
1

information from Subroutine EIGRS - See the IKL Manual

‘i~ ““e ‘e’ative ‘igen”a’”es
(-.*119 -.290. ‘.1621 -.065+ -.00u6; .0756 .184+ .2670 .3596 .5073 .5512 .7244 .8!97 1.4550 Z.S’274 9.5588- /

UECI. NO. EIGfNUCCTORS

1 .303 2.277E-02 13.596E-02 -.381 -.227 -.239 .377
-. 240 .133 .222 -.2*1

2 -.264 -2.61@E-i12-2.813111-02 -.213
-. 25+

.109 ‘.116 .183
.353 .2*2 -8.712E-02

3-3. 744i-02 -.243 -.2+4 .227 3.605E-c2 -.121 -.254
-.565 .166 -.509 -9.580 E-02

4 .396 -13.4COE-02 -.150 -5.2911Z-02-6.404C-(13 3.3417E-02 .200

. ?.46 . S3S -.154 .457

5 .113 -.*43 .22* -5.708f-02 6.*99C-62-1.874C-02 -.213

.192 -.184 .1Q8 3. S99E-O 3

6 . 27+ -.351 -.215 3.8SIE-02 .159 -&296E-02 .14S
-.*O* -.4s1 .252 .3r7

7 .299 -.376 -+.4U9C-02 .106 .500 S.201E-02 .164
.284 .13* 6.1@7E-02 ‘.361

a -.401 .125 9.0S3f-02 6.?82E42 .582 -.439 .274

6. *28E-02-5.238C-02 -.145 5.7+3E-02

9-4. 27W-02 -.356 .163 .379 -.319 -.*55 -.111
.157 . 1*S 4.327C-02 -.20+

10 ‘.296 -.31+ 9. BI K-02 -.4+6 .137 .176 -.455

.l.lSOE-02 .221 .12s .189

11-L. 776E-02 ‘.219 .4)2 -.293 S.87X-02 .313

-.213

.247

-.119 -.455 -.226

12 .261 .101 -.193 -.385 .284 -.426 -.377
-5.136f-03 1.177C-32-2.+99E-02-4.00 7E43

lJ-1.47:t-U~ 4.0+2 C-7J2 ‘.603
.219 ‘.229 -.129

14 .219 .106 .257
S. 589C-02 -.188 -.266

1: -.251 ‘.265 -.336

-4. 170E-02 .169 .135

16 ‘.266 ‘.259 -.1s9
.314 -.293 -.204

DEIEnPINANI = ‘4.5D6E-09

.119 -.321 -.J72 6.266f-02 .251’+ First

eigenvector

7.864E-02 .326 1.19A3E-02 -.499 -.466 & second

.314

-.151

.434

-.314

.153

-.112

-.481

-.226

-.31s

‘3.678C-02 -.169 4.6S3f-03 5.@58E-02 .

-.184 2.0:3E-02-2.5COE-02 ‘.211 etc.

-.497 .1s3 ‘.249 -.255

13.S48E-02-2.953E-02 3.?17C-02 ‘.139

.J82 -@.389C-02 .186 .131

-.:64 -1.14SE-Oi .14s -4.858C-02

2.29W-04-4.9SOE-02 -.217 9.742C-S2

-13.T30E-03-.3aQ .192 .114

-1. S1OC-O2 .301 -.155 9.761E-02

-6.917E-02 0.l?JC-02 .410 -.216 .328

.
-.147 1.301C-C2 .179 -4.532C-02 -.262 -.2s1 -.241 -.224 -.209
-.+22

-.227 -.123 -.S24 -.196 -1.7S01-02

-. 13t

. 234 -.137 .559 -.57*

-.1*7 -.235 -7.555f-02 .123 -9.039E-02-9.776E-02 .533 .524
- . 150

-.ioa

-.2ss -.25a -.227 .269 .2a1 .293 -.127 -. 140 .214
.267

EICCMUMUES AFTER ADJUSTMENT =

/-0’=Adjusted eigenvalues Note that none of these five eigenvalues are
leas than .001. Therefore they aro um+anqed.

.267r .3596 .5073 ●5312 .724* .a:93 1.45:0 :.?274 9.9saa

.

Figure 2



RESULTING PRODUCT MATRIX AFTER THE

~EIG.=.e

10 E16ENv ALIJEs HAvE BEEN TESTf O ANO AD JUSTCD UIIERE N~cfss ARy.
HINIXUM C16ENVALUE USED =

—

1.0688 .9041 .6105 .666D ●7629 .4807 -.8602 -.6970 -.5698 .1542 .1452 -.6386 -.8021 .6025 .6034 -.7108

.9041 1.0109 .5114 .6894 ●7956 .5033 -.7887 -.6114 -.7019 .1029 .1046 -.5947 -.77~51 .5851 ●6222 -.6003

●6105 ,5114 1.4146 .4797 .4897 .2969 -.4800 -.4073 -.2101 -.1067 .1064 --3873 -.S865 .3858 .2296 ‘.2086

.6660 .689+ .+797 1.0816 .6332 .6402 -.4807 -.6115 -.7713 .1513 .1214 -.4C80 -.7655 .7615 .8324 -.5618

.1629 91956 .4897 .6302 1.0249 ●61130 ‘.731O -.7067 -.7599 .1342 .0783 -.3380 -.7883 .6955 .6841 -.5810

.9a07 ●5033 .2969 .6402 .6180 1.0300 -.q380 -.6210 -.7787 .1396 .1105 -.3105 -.7567 .67Z8 .C792 -.5703

-.8602 ‘.7887 -.4800 -.*807 -.731O -.4389 1.0817 s8076 .6676 -.1500 -.3174 ●6C 94 .7768 -.76C2 -.7358 .6679

-.6970 ‘.6114 -.4073 -.6115 -.7067 -.62111 .8076 1.0256 .?’203 -.3267 ‘.3079 .6062 .8515 -.7823 -*7062 ●8766

-.5698 -07019 -.2101 -.7713 -.7599 -.7787 .6676 .8903 1.0766 -.4485 -.3551 .5241 .9117 -.8920 -.8976 .8189

.1542 .1029 -.1067 .1513 .1342 .1396 -.1500 -.3267 -.4485 1.0618 .5884 -.1419 -.5480 ●5769 .4804 -.4600

-1452 ●1E46 ●1064 .1214 ●0783 .1105 -*3174 -03079 -03551 .5884 100742 -.7251 ‘-47J4 .5511 .470s -.95-7

-.6386 -.5947 -.3873 -.4080 -.3380 -.3105 .6094 .6062 .5247 -.1+19 -.7251 1.0929 .5986 -.4402 ‘.4095 .7796

-.8021 -.7795 -.5865 -.7695 -.7883 -.7567 .7768 .8515 ●9117 -.54J30 -.4734 .5986 1.0S59 -.9429 -.8970 .7462 I
N

.’3L125 .5891 .3898 .7615 .6995 .6728 -.7602 -,7823 -.8920 .5769 05511 -.4402 -.9439 1.0672 1.0112 -.7086
CD

/ Note diagonal 1~
●6u34 .6222 .2296 .8324 .6841 .6792 -.7358 -.7062 -.8976 .4804 .4709

-.7108 -.6oO3 -.2086 -*5618 -.5810 -05703 .6679 .8766 .8189 -.4600 -.4947 ‘::: ‘:::%?:::::= ‘Wsthan

I r——
AFTER THE ABOVE PROOUCT MATRIX IS FORMEDS THE OIA60NAL ELEMENTS ARE SET EOUAL TO 1.00 . I \

TM RESULTING “RANK CORRELATION MATRIX” IS GIvEN AT THE BEGINNING OF TM NEXT ITERATICN.
/ ‘1

i

\
New A proximate

Ycorre atzon Matrix.

Note tiis off-diagonal element
greater than one. .

Figure 3



XICPAIIUN J4U17MLK =
-- ..+.-., . . . . . ..-

~ Becjinning of Second Iteration
, .

IhPLT “RANK CORRELATION STRUCTURE= FOR THE RANOCI! VARIABLES 8EIN6 TRANSFOENEO

VARIABLE NUMBER

4 8 12 16 20 2+ 28 32 36 *C 44 48 52 56 60 64

4 1.6000

8 .91)*1 1.OLO!I

12 .6105 .5114 1.0000

16 .666L .6894 .4797 1.3000

2U .7629 .?956 . +897 .6302 1.0000

2* . 4807 .5033 .2969 .6+02 .6180 1.0000

28 -. 86@2 ‘.7687 ‘.4900 ‘.+807 -.7310 -.4380 1.0000

32 -.6970 ‘.6114 ‘.4073 ‘-6115 -.7067 -.6210 ●8U76 1.0000

36 -.5693 -.7019 -.2101 -.7713 -.7599 -.7787 .6676 .89o3 1.0000 N

40 .1542 ●1029 --1)67 ●1513 -1342 .1396 ‘01500 -.3267 -04485 1s0000
a

44 .1452 .1546 .1064 .1214 .9783 .1105 -.3174 -03079 -03s51 .5884 1.0000

/

Diagonal elements

*e -.6386
has been set equal

-.5947 -.2873 -.4080 -.3380 -.3105 .6094 .6062 .5247 -.1419 -.7251 1.OGOO to one.

52
d

-.8021 -.7795 -.586S -.7695 -.7883 -.7567 .7768 ●8515 .9117 -.5480 -.4734 .5986 1.0600

56 .6G25 .5891 .3898 .7615 .6995 .6728 ‘.7602 -.7823 -.8920 .5769 .5511 ‘~4+02 -.9+39 1.0000

69 .6034 .6222 .2296 ●8324 .6841 .6792 -.7358 -.7062 -.8976 .4004 .4709 -.4095

F

-.s970 1.0113 1.0000

6* -.71OE -.6u03 -.2086 -.561.3 -.5810 -.5703 .6679 .8?66 .8189 -.4600 -.4947 ●7796 ●746 -.7,086 -.6304 1.0000

A/
Off-diagonal element is

still greater than one.

Figure 4





ANALISIS OF THE 16 87 15 PRIHE DIAGOMAL SUHMATRIX

PER FORHA t+CE INDEX = . lJ5

ilGENMALu Es =

.llotld .00J5 .0U05 .30b6 .0008 .0009 .lJ72 .1981 .2962 .*G+2 .+495 .6395 .?6~9 1.3+53 1.9+16 9.8+99
1 All eigenvalueS

VECT. MO. E16ENv CCTORS are positive.

1-5. *S3E-C2 -.124 -.213

.

-3.438 [-02-4.01 Of-E2 -.178 4..9+ 9E-o2 6.806E-OZ .101
‘.902

-.231 -7.317C-02-1.*0811-03
-7.064E -02-8 .+56C-02-2 .391 E-f12

2 2.315E-02 .127 -1.56X-02 -.248 -7.462E-C2-9.0+9E-02 .269 .113 2.961K-02 -.153 -.220
S.506E-02 .826 -.187 -.110

-.134

3 .12+ -9.783C-02 .266 -.397 -.125 -.166 .192 .26$ -.+16 -.121 -.1*3 2.072E-02
-5. 751 E-02 -.183 .5*4 -.239

+ .330 -.31s -3.995E-02 .100 -3.926E-fi2-*.2 25E-02 -.180 .244 -.637
3. 5T3t-b3 5.504 E-02 -.46s .231

:. O? fE-8? 7.170E-02 8.613E-03

5 . *O* .202 -13.860 E-U2-9.333E-02 ‘.122 -2.2olfz-02 .366 -.352 ‘2.876E-02 -.270
1. 538 E-03-2 .J23E-03-2.180E-02 7.605C-02

.463 .460

6 .320 -.248 -.150 -9.592 C-02 .131 3.*81E-03 .28* -.30.9 6. 79tE-02 .116 -.196
-!3.601E-0 +2.147 E-02 .259 .538

-.456

7 . 394 -.51s -9.412E-02 .1s1 .370 4.1389E-02 3.91 5f-112 .267 ● 378 -t.865E-02 .105
.111

9.747E-02
7.794C->2 8.728E-02 -.372

S .360 -2.247 E-02 -6.5138 E-O 2 -.116 -.660 .404 -.351 9.2w E-02 .249
-6. ll:E-02 5.873C-02

5.2 S9E-02 ‘.1S3
.117 3.731E-02

7.396E-OZ

9 3.3130E-02 .325 -.192 -.409 .349 .496 .115 .455 2.634E-G2 5.6*2E-02 .217 -9.317E-02
-. 105 ‘.125 -9.931 C-02 .156

10 ‘.250 -.195
8.271E-02 .236

1; -.lC1 -.374
-.108 -1.090 C-B2

12 .256 .223
-~. 852 E-03 1. S91C-B2

13-1 .503 E-02 -6.456C-22
-. 19+ .226

14 -.210 -.108
-4. 962E-02 .177

1s -.251 -.269
-$. 14+ E-u2 .107

16 ‘.266 -. 261
.311 -.291

-.110 -.271 .150 -3.416E-.3 -.512 -6.332 E-9:-8.09 OC -03 -.46: .259 :.85:E-02
.288 .34$

.397 -.461 .128 .279 ‘1.9+ 3E-92 -.441 5.6?9E-03 .147 -.103 .163
-.310 -.155

-.233 -.316 .259 -.*88 -.335 ‘2.648E-02 7.869E-02 .417 -.206 .317
3.299C-03 3.2 B8f-02

.627 .164 -1.757E-02 -.14 7. 12M-02 .26o .:05 .256 .221 .20s

.131 .+22

-.279 .226 .136 .351 .193 L.36211-OZ -.23S .128 -.364 .556

.252 .149

-.3*9 -.142 -.239 -7.282E-02 .tla ‘1.469 E-L12 -.101 .53* .515
.133 -.166

-.lUS

-,160 -.252 ‘.260 ‘.229 .269 .283 .292 -.1:7 -.139 .213
-.282 .268

I
u
1-
1

OCIERPINAN1 = e———
Note, the determinant is positive.

Figure 6



ANALYSIS OF THE 2 BY 2 PRIME OIAGONAL SUB MA; RIX

PC RF ORi4ANCE INDEX = .132

C16ENMALUES =

.0989 1.9011

UECT. No. E16ENVECTORS

1 -.707 .707

2 -.707 -.707

DETERMINANT = .188

I
w
N
I

Figure 7
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V* Deck Setup for POSDEF

Following we give.an example of how to set up the cards for use in

running POSDEF. The first 10 cards are the usual job card, account card,

and other control cards. This is followed by the Fortran program which

is followed by the data (a listing of the program is given in Appendix

A).

DECK SETUP FOR POSDEF

YP0,T5, STSSZ.

USER,NAMEXXX,PASWORD.

CHARGE,0188000.

FTN,R=2.

PFGET,SUBZ,OLDLIB,AU=ELFROST.

PFGET,IMSL,FXIMSL,AU=MATHLIB.

LIBRARY,SUBZ,IMSL.

LI)SET,PRESET=NGINDEF.

LGO,PL=1OOOO.

EXIT.

EXIT.

(END OF RECORD -- MULTI-PUNCH 789 IN COL 1)

PROGRAM POSDEF GOES HERE

(END OF RECORD -- MULTI-PUNCH 789 IN COL 1)
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[DATAAND INPUT-PARAMETERCARDSGO HERE]

(END OF RECORD -- MULTI-PUNCH 789 IN COL 1)

(END OF INFORMATION-- MULTI-PUNCH6789 IN COL 1)

This completes the information needed to run POSDEF. An example

of the data that was used in the example in section IV is given in Figure

9.
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Figure 9

Input-Parameter Cards

1 16
2 4 ; 12 16
3 1.00 0.90
4 0.50 1.00
5 0.50 0.30
6 -0.40 -0.70
7 -0.70 -0.60
8 -0.80 -0.80
9 0.10 0.10
10 0.10 0.10
11 0.60 1.00
12 0.60 0.60
13 -0.60 -0.80
14 -0.50 0.60
15 0.70 -0.80
16 1.00 0.60
17 -0.70 -0.90
18 -0.70 -0.60
19 0.80 -0.50

20 24
1.00
0.80
0.60
-0.40
0.80
0.70
0.10
0.10
-0.70
0.60
-0.80
1.00

-0.80
0.60
0.50
-0.20
-0.50

28 32
0.60
0.80
0.60
1.00
1.00
0.90
-0.10
0.10
-0.60
-0.10
-0.80
0.60
-0.90
0.20
0.50
-0.60
0.80

36 40
0.50
0.50
1.00

-0.70
-0.50
1.00

-0.30
0.10
-0.40
-0.80
0.80
0.60
0.60
0.90
-0.40
-0.60
0.70

44 48 52 56
1.00 0.70
0.60 1.00
-0.90 -0.80
-0.60 -0.40
-0.70 -0.20
0.20 0.10
-0.50 1.00
-0.30 -0.30
-0.40 -0.30
1.00 -0.80
0.90 0.90
0.40 0.80
0.60 -0.40
0.70 0.70
-0.90 .9999
-0.60 0.70
-0.70 -0.60

60 64
0.70
0.50

-0.50
-0.60
-0.80
-0.10
0.10

-0.30
-0.30
-0.80
-0.60

0.70
-0.90
-0.80

1.00
0.90
1.00
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VI. Discussion

The user should recall that the input “approximate correlation matrix”

can be ill-conditioned. These types of matrices frequently occur when

a modeler places positive ones on the diagonal elements and then assigns

correlations to the pairwise configurations of variables. While it is

impossible to construct a negative definite matrix in this way, this

matrix will have only a few negative eigenvalues. These will be small

in absolute value (very near zero), provided this matrix is not ill-condi-

tioned (i.e. one or more negative eigenvalues that are relatively large in

absolute value such as -1, -2 or -3)0

Recall that we have no guarantee that this algorithm will converge

in such ill-conditioned cases, but we have never failed to see it con-

verge. However, the final correlation matrix may be quite different

from the original “approximate correlation matrix.” We illustrate some

of these principles with the following example.

Figure 10 gives the input “approximate rank correlation matrix” for

19 variables, labeled as indicated. As can be seen, the modeler indicates

that variable numbers 1 through 11 are independent of each other. Also

variable numbers 22 and 23 are each correlated negatively with each of

variables 1-11. The indicated value of this correlation coefficient is

-0.7. Finally the modeler indicates that variables 22 and 23 are indepen-

dent.
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A careful examination of these relationships will show that such

an arrangement is essentially impossible. Consider the three hypothetical

variables Xl, X2 and X3. Suppose (Xl, X2) = -0.7 and furthermore

suppose (xl, x3) = -.8. Then it is obvious that (X2, X3) > O;

that is variables X2 and X3 will have a strong positive correlation.

This matrix is ill-conditioned. There is only one negative eigen-

value hut its value is -2.3571. However, the algorlthm did converge

after eight iterations. But it is not surprising that the values of

the original matrix have been altered quite a bit. For example, the

correlation value -0.7 becomes -0.4033; the zero correlation between

variables 22 and 23 becomes 0.6451; and the zero correlations assigned

to variables 1-11 all become 0.i214 (see Figure 11). This may or

may not be acceptable to the modeler, but does indicate that care should

be taken in the construction of the original “approximate correlation

matrix.” This simply illustrates that a collection of pairwise corre-

lation coefficients does not make a correlation matrix. A multivariate

distribution is much more complicated than this.



INPUT ‘RANK CORRELATION STRUCTURE” FOR THE RANCOR VARIABLES BEING TRANSFORMED

VARIABLE NUNMER

s 6 I LI 9 10 11 22 25 24

i 1.0000

2 000000 1.0030
Note the zero correlations.

J 0.0000 G*OOOO 1.0000

4 6.0000 O.JOOO 0.0000 1.0000

/’5 0.0000 0.0000 0.0000 0.0000 1.00’I’I

6 0.0000 0.0000 0.0000 0.0000 0.0008 1.’23dC

7 9.0000 0.C3C0 0.0000 0.0000 0.000e 0.0003 1.0000

8 O.cooo 0.0000 0.0000 0.0000 0.00LM 0.0000 0.0000 1.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

lC 0.0000 O.uooo 0.0000 0.0000 0.000n 000000 0.0000 0.0000 0.0000 l.otioo

25 26 27

11 U.000o 0.0000 0.0000 0.0000 0.030? 0.000c O.OGOO 0.0000 0.0000 0.0000 1.ooa9

22

d coefficient”

Note this zero correlation

-.7000 -.7000 -.1OUO -.7000 -.70178 -.?000 -.7000 -.7000 -.7000 -.7000 -.7000 1.0000

23 -.7CO0 -.70C0 -.7000 -.?000 -.730e -.1000 -.7000 -.?000 -.7000 -.7000 -.7000 0.0000 1.0000

2* 0.0000 0.0000 0.0000 o.000~ 000000 0.1000 0.0000 O*OOOC O.OJOO 0.0000 0.0000 .7000 0.0000 1.0000

2?) o.o~oo 0.:000 0.0000 000000 000909 0.3090 090000 090000 0.0000 0.0000 0.0000 0.0000 ●7000 0*0000 1.0000

?6 0.0000 0.C290 0.000J 0.0000 0.0009 0.1000 0.0000 0.9000 O.OdOO O.11000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

21 C.000o C*0300 000000 0.6000 o.000~ 0.0000 0.0000 0.0000 0.0000 O.aooo 0.0000 0.0000 0.0000 0.0000 0.0000 .7000 1.0000

211 n.000o 6.0000 O.ooco 0.0000 0.0008 0.0900 0.0009 0.0000 0.olloo 0.0000 000000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
I.000c

1
u
w
I

29 0.0000 O.UCOO 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0,0030 0.0000 0.0000 0.0000 0.0000 0.0000
.?OOJ l.ilooo

Figure 10 .



IT IRA TICN N1.JMB[2 = o–-.1
Algorithm converged on

INPUT “RANK CORRELATION ST RUCIURE - FOI THE RANCOR VA RI A3LES BEING

VA RI AFILC NU)IEICR

1 2 3 4 5 6 7 a
2f3 29

1 1.0000

2 .121$ 1.000a

3 .121*

4 .1214

5 .121+

6 .1214

7 .1214

8 .1214

9 .121*

10 .1214

11 .1214

.121*

●121*

.121*

.1214

.1214

●121+

.1214

.121*

.121*

22 -.4033 -.4033

23 -.4033 -.4033

24 -.0602 -.C6C2

25 -.0602 -.0602

26 0.0000 0.000!3

27 G.0000 O.JOOO

2b O.oiloo 0.0000
1.0000

1.00JI

the 9th iteration.

TRANSFORHCD

9 10 11 22 23

.1214

.l~l+

.121*

.121+

●121*

.1214

.1214

24 25 26 21

.1214 .121* 1.0000

.1214 ,12 14 .1214 1.0000

.121* .1214 .1214 .1214 1.0000

.1214 .1214 .1214 .1214 .1214 1.0000

.1214 .1214 .1214 .1214 .1214 .1214 1.0000

.1214 .1214 .1214 .1214 .1214 .1214 .1214 1.000J

-.4033
m

-.%033 -.+033 -.$033 -.4033 -.4033 -.4033 -.4033 -.4033 1.0000

-.4033 -.4033 -.4033 -.3033 -.4033 -.4033 -.4033 -.4033 -.4033

-.0602 ‘.0602 ‘.0602 -.0602 ‘.G602 -.0602 -.0602 -.0602 -.0602 .5013 -.0952 1.0000

These were initially
I
&

. .0
set equal to -0.7. I

Was initially set

equal to zero.

-.0632 -.0602 -.0602 -.0602 -.0602 -.0602 -.0602 -.Ck02 -.0602 -.0952 .5013 -.0029 1.0000

O.ooco 0.0000 0.0000 0.0000 0.0000 0.9000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
.

L3.000o 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 .7000 1.0000

0000GO 0.0000 0.0000 0.3000 0.0000 0.0000 0.0000 0.0300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

These

variables

are

unchanged.

29 C.0000 0.0000 0.00o0 O.COOo 0.0008 0.0000 0.0000 0.0000 J.JOOO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
.7000 l*COOO J .

Figure 11
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APPENDIX A. Listing of the Fortran Source Deck for the POSDEF Program.
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PROGRAM POSDEF( INPUT,0UTPUT,PUNCH,TAPE5)
DIMENSION CORX(21O), NK(20), D(20), Z(20,20), WK(21O), CORZ(21O)

= THE DIMENSIONS OF Z, I.E. Z(NN,NN).
l!lTANN/20/

EIG = THE VALUE THAT THE NEGATIVE EIGENVALUES ARE SET EQUAL TO.
DATA EIG/O.001/

M= MAXIMUM NUMBER OF ITERATIONS ALLOWED.
M=20
M1=M+l

ITEST=l
READ 110, NP,IDIAG
READ 120, (NK(I),I=l,Np)
NKx=NP*(NP+l)/2
READ 130, (CORX(I),I=l,NKX)

10 PRINT 140
IF (ITEST.GT.M) GO TO 20
GO TO 30

20 IF (IDIAG.EQ.0) GO TO 100
PRINT 150
GO TO 40

30 PRINT 160, ITEST
40 PRINT 170

PRINT 180
PRINT 190, (NK(I),I=l,Np)
11=1
IK=l
DO 50 I=l,NP
PRINT 200, NK(I)s(coRX(J)9J=1191K)

II=IK+l
IK=IK+I+l

50 CONTINUE
IL=NP
IF (ITEST.EQ.M1) IL=2
DO 80 K=IL,NP
CALL EIGRS (CORX,K,2,D,Z,NN,WK,IER)
PRINT 210, K,K
PRINT 220, WK(l)
PRINT 230, (D(I),I=l,K)
PRINT 240
DO 60 J=l,K

60 PRINT 250, J,(Z(I,J),I=l,K)
DET=l.O
DO 70 J=l,K

70 DET=DET*D(J)
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30 CONTINUE
c
c END OF SCHEME
c

PRINT 140, (D(I),I=l,NP)
GO TO 60

40 PRINT 150, ITEST
IF (ITEST.EQ.1) GO TO 60

50 CONTINUE
ITEST=M
GO TO 130

60 CONTINUE
DO 70 J=l,NP
DO 70 I=l,NP

70 T(I,J)=Z(I,J)*D(J)
DO 80 I=l,M
DO 80 J=l,M

80 X(I,J)=O.O
DO 100 I=l,NP
DO 100 J=I,NP
DO 90 K=l,NP

90 X(I,J)=X(I,J)+T(I,K)*Z(J,K)
100 CONTINUE

PRINT 170
NE2=NEV*2
PRINT 160, NE2,EIG
DO 110 I=l,NP

110 PRINT 180, (X(I,J),J=l,Np)
CALL SCALEIT (NP,X)
KI=O
DO 120 I=l,NP
DO 120 J=1,1
KI=KI+l

120 CORZ(KI)=X(I,J)
IF (ITEST.EQ.1.AND.NEV.EQ.0) GO TO 50

130 RETURN
c

140 FORMAT (31HOEIGENVALUES AFTER ADJUSTMENT =,/,lH0,17(F7e4),/,17(F7.
14))

150 FORflAT (56filALL THE EIGENVALUES WERE POSITIVE ON ITERATION NUMBER
1 ,15,2H .,/)

160 FORMAT (42HORESULTING PRODUCT MATRIX AFTER THE FIRST ,15,59H EIGEN
lVALUES HAVE BEEN TESTED AND ADJUSTED WHERE NECESSARY.,/,lX,26HMINI
2MUM EIGENVALUE USED = ,G12.4,/)

170 FORMAT (lH1)
180 FORMAT (lH0,17(F7.4),/,17(F7.4))

END
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SUBROUTINE SCALEIT(NP,X)
DIMENSION X(20,1)
DO 10 I=l,NP

10 X(I,I)=l.O
PRINT 20
PRINT 30
RETURN

c
20 FORMAT (//,lX,87HAFTER THE ABOVE PRODUCT MATRIX IS FORMED, THE DIA

lGONAL ELEMENTS ARE SET EQUAL TO 1.00 .)
30 FORMAT (/,lX,88HTHE RESULTING “RANK CORRELATION MATRIX” IS GIVEN A

lTTHE BEGINNINGOF THE NEXT ITERATION.)
END
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